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Introduction

The standard model attitude measurement instru-
mentation used at Langley Research Center (LaRC) is
the inertial sensor or angle-of-attack (AOA) package
described in detail in reference1. Installed in a model
during wind tunnel tests, the AOA package generates an
output signal proportional to the model pitch attitude.
This signal is then heavily low-pass filtered before final
data processing to remove time-varying components
caused by random flow noise and vibration. Certain test
conditions produce oscillatory model and sting motion in
pitch and yaw, which produces a centrifugal or normal
acceleration component in which the average value
results in constant offset errors in the sensed AOA mea-
surement. The magnitude of the offset can be as great as

, which is unacceptable in AOA measurements in
which the accuracy requirement can be as low as .
This paper presents a dynamic analysis and proposes a
spectral analysis technique for detecting model and sting
motion and for correcting the resulting AOA errors by a
factor of 20 to 1.

Symbols

pitch oscillation amplitude, rad

yaw oscillation amplitude, rad

normal acceleration component caused by
pitch motion, in/sec2

normal acceleration component caused by
yaw motion, in/sec2

pitch plane accelerometer

standard AOA sensor

yaw plane accelerometer

gravitational constant, in/sec2

nth-order Bessel function of first kind

pitch motion radius, in.

yaw motion radius, in.

S AOA sensor sensitivity, V/g

time, sec

parametric constant,
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corrected, filtered sensor voltage output, V

power spectral line amplitude,
frequency , V

uncorrected, filtered sensor voltage output, V

uncorrected, unfiltered sensor voltage
output, V

angular pitch plane position, rad

angular yaw plane position, rad

model pitch attitude, rad or deg

standard deviation of corrected, filtered sensor
output, deg

standard deviation of power spectral line,
frequency , deg

standard deviation of power spectral line,ith
oscillatory mode, deg

standard deviation of uncorrected, filtered
sensor output, deg

longitudinal oscillation frequency, rad/sec

pitch plane oscillation frequency, rad/sec

yaw plane oscillation frequency, rad/sec

angular velocity in pitch, rad/sec

angular velocity in yaw, rad/sec

Abbreviations:

AOA angle of attack

FFT fast-Fourier transform

Analysis of Yaw and Pitch Motion

As shown in figure1, let  and  denote the
angular motion of the model in pitch and yaw, respec-
tively. Let  and , and  and  denote the fre-
quencies and amplitudes of oscillation in the respective
planes. Yaw and pitch will be analyzed separately.
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Abstract

This report presents a theoretical analysis of the dynamic effects of angular
motion in yaw and pitch on model attitude measurements in which inertial sensors
were used during wind tunnel tests. A technique is developed to reduce the error
caused by these effects. The analysis shows that a 20-to-1 reduction in model attitude
measurement error caused by angular motion is possible with this technique.
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Motion in Yaw Plane

Yaw motion is first modeled as in the following
equations:

(1)

where  is the angular velocity,  is the normal com-
ponent of the acceleration vector, is the radius, andt
is time. Combining the second and third expressions of
equations(1) yields the normal component of the accel-
eration vector as a function of time:

(2)

The standard LaRC AOA package is installed in an
airplane model as shown in figure2, with its sensitive
axis parallel to the longitudinal axis of the model. The
AOA output signal caused by angular motion in yaw,
prior to filtering, is

(3)

where  is the uncorrected, unfiltered sensor-package
output voltage, S is the AOA sensor sensitivity,g is the
gravitational constant, and is the model pitch attitude
or angle of attack, expressed in radians for computation
and converted to degrees for final presentation. The three
terms of equation(3) are presented in figure3 as func-
tions of time. After filtering, the sensor output is the sum
of the first two terms of equation(3) as shown in the fol-
lowing equation:

(4)

where  is the uncorrected, filtered sensor output. The
offset error, given by the second term  and
equal to the amplitude of the third term of equation(3),
can be determined from the power spectrum of the unfil-
tered sensor output at frequency . Thus,

(5)
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where  is the power spectral amplitude at frequency
. The corrected, filtered sensor output  finally

becomes

(6)

Motion in Pitch Plane

Pitch motion is similarly modeled in the following
equations:

(7)

where  is the angular velocity,  is the normal
acceleration component,  is the radius, andt is time.
The normal acceleration component can be expressed as

(8)

If the angular pitch motion is superimposed on the
pitch angle, equation (3) becomes

(9)

Equation(9) can be further approximated using
equation (6) to yield the following:

(10)

In addition to the normal acceleration vector component,
comparison of equations (3) and (10) shows the presence
of another sinusoidal component at frequency caused
by frequency modulation. The modulation component at

 does not produce offset, and error correction is
unnecessary at this frequency. Additional sensors may be
required to identify these modulation frequencies. The
same error correction method is used for both yaw and
pitch. That is, the corrected AOA sensor output is the
sum of the uncorrected filtered output and the amplitude
of the spectral component at frequency .

Magnitude Estimate of Error Caused by Angular
Motion

The AOA offset error, as expressed in equation(5),
is presented in figure4 as families of curves parameter-
ized for typical values of the angular motion amplitude
and its radius over frequencies from 0 to 30Hz. Experi-
mental AOA offset errors of  have been observed.
These errors correspond to a  motion amplitude at a
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30-in. radius at 10Hz. Figure4 illustrates curves of AOA
offset errors at radii of 6 and 30in. and at angular ampli-
tudes from  to . Other combinations of radius,
amplitude, and frequency may produce AOA offset
errors up to .

AOA Sensor-Package Configuration

The total sensor output which results from multiple
oscillatory modes is presented and shows that additional
sensors are required to identify uniquely those oscillatory
modes arising from angular motion. An error analysis
follows that estimates the error reduction provided by the
proposed technique.

AOA Sensor-Package Output

The AOA sensor-package output contains at least the
following signal components:

1. Constant component  caused by model pitch
angle

2. Time-varying and constant components caused by
angular yaw motion

3. Time-varying and constant components caused by
angular pitch motion

4. Time-varying components along the model longitu-
dinal axis

Note that all time-varying components can be removed
by low-pass filtering. Spectral analysis of the unfiltered
sensor output identifies all time-varying components in
the signal. Appropriate correction is applied to those
components producing AOA error. Term-by-term error
correction is required for multiple oscillatory modes in
pitch and yaw identified by the spectral analysis.

Three-Axis Sensor Package

The proposed technique to reduce AOA error
requires a spectral line estimate of the unfiltered AOA
sensor-package output. However, as indicated in
equation(10), indiscriminate use of fast-Fourier trans-
form (FFT) spectral lines may result in improper correc-
tion for modulation components. Consequently,
additional sensors in pitch and yaw are required to iden-
tify only those oscillatory components producing AOA
errors. Figure5 shows a proposed three-axis sensor pack-
age that consists of a standard LaRC AOA sensor
aligned with the model longitudinal axis and two minia-
ture accelerometers  and  mounted in the yaw and
pitch planes, respectively. Accelerometer, mounted
transversely to the roll axis, responds only to yaw
motion. Since  does not respond to normal accelera-

0.1° 0.2°

0.1°

θsin

Er

Ey Ep
Ey

Ey

tion produced by angular motion in either pitch or yaw,
its output does not contain the constant terms or the time-
varying components at frequencies  and  appear-
ing in equations(2) and(8). Accelerometer  output,
however, does contain the tangential acceleration com-
ponent at frequency . Similarly, accelerometer ,
mounted orthogonally to , does not respond to normal
acceleration produced by either pitch or yaw motion. It
does respond to the tangential acceleration component in
the pitch plane at frequency  and to the cosine compo-
nent of the gravitational vector. The presence of angular
motion in each plane can thus be identified from the
power spectral component frequency signatures of the
three accelerometer outputs, as summarized in table I.

Of the four spectral components in the power spec-
trum, only those modes at frequencies  and  pro-
duce AOA offset errors that require correction.
Therefore, the noncontributing modes at  and  must
be identified and discarded. The following procedure
identifies those frequency components in  to be
included or eliminated for correction of AOA offset
errors.

1. Frequency  is obtained from the cross spectrum
of  and  outputs;  is eliminated, and a cor-
rection is made at .

2. Frequency  is obtained from the  power spec-
trum. The  power spectrum is searched for a
component at frequency  for correction.

3. The remaining frequency components in the
spectrum, assumed to be longitudinal, are
eliminated.

Measurement Uncertainty Estimate

The variance of AOA measurements provided by
this method is obtained from the variance of
equation (6):

(11)
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If additional oscillatory modes that contribute signifi-
cantly to the total AOA error are identified, their individ-
ual error values must be included in the following form:

(12)

where  is the measurement error variance of the
ith oscillatory mode.

For a maximum AOA offset error of  and an
estimated 5-percent spectral analysis accuracy, the stan-
dard deviation of the AOA offset error becomes

(13)

Thus, a 20-to-1 reduction in the error portion caused
by angular motion is possible. Equation(11) and the
assumption that  (ref. 1) show that the
total error is

(14)
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Concluding Remarks

This paper is a theoretical treatment of angular
motion effects upon inertially sensed model attitude mea-
surements. A technique was developed to identify the
time-varying components that produce angle-of-attack
(AOA) offset errors. The analysis quantifies the offset
error magnitudes, based on knowledge of the angular
motion radii and frequencies. Spectral analysis tech-
niques identify only those frequency components of the
motion that contribute to AOA offset errors. A technique
that does not require prior knowledge of the radius of
motion is proposed to estimate AOA offset error magni-
tudes. Experimental verification of the proposed method
has not been attempted. Note that the AOA offset error
cannot be removed by filtering or time averaging.

NASA Langley Research Center
Hampton, VA 23681-0001
November 28, 1994
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Appendix

Approximation of Angular Motion in Pitch

Equation(10) describes the angular pitch motion.
The first term contains , and is phase modulated by
the sinusoidally varying angular motion at amplitude

 at frequency , as shown in the following
equation:

(A1)

where . Expand equation (A1) using trigono-
metric identities into the form

(A2)

The second factor of each term of equation(A2) can be
expanded as follows:

(A3)
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where  is thenth-order Bessel function of the first
kind. For the values of  and , cited in figure4,
u ranges from 0.001 to 0.008, for which the Bessel func-
tions are closely approximated as

(A4)

where , ,
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mated as
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Figure 1.  Yaw and pitch motion of wind tunnel model.

Figure 2.  AOA sensor installation.
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Figure 3.  AOA sensor output.
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Figure 4.  AOA offset error caused by model dynamics.

Figure 5.  Three-axis AOA sensor package.
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